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Quantitative BOLD (qBOLD) is a technique for mapping oxygen extraction fraction (OEF) and deoxygenated blood
volume (DBV) in the human brain. Recent measurements using an asymmetric spin echo (ASE) based qBOLD
approach produced estimates of DBV which were systematically higher than measurements from other tech-
niques. In this study, we investigate two hypotheses for the origin of this DBV overestimation using simulations
and consider the implications for experimental measurements. Investigations were performed by combining
Monte Carlo simulations of extravascular signal with an analytical model of the intravascular signal.
Hypothesis 1: DBV overestimation is due to the presence of intravascular signal which is not accounted for in the
analysis model. Intravascular signal was found to have a weak effect on qBOLD parameter estimates.
Hypothesis 2: DBV overestimation is due to the effects of diffusion which are not accounted for in the analysis
model. The effect of diffusion on the extravascular signal was found to result in a vessel radius dependent vari-
ation in qBOLD parameter estimates. In particular, DBV overestimation peaks for vessels with radii from 20 to
30 μm and is OEF dependent. This results in the systematic underestimation of OEF.
Implications: The impact on experimental qBOLD measurements was investigated by simulating a more physio-
logically realistic distribution of vessel sizes with a small number of discrete radii. Overestimation of DBV
consistent with previous experiments was observed, which was also found to be OEF dependent. This results in
the progressive underestimation of the measured OEF. Furthermore, the relationship between the measured OEF
and the true OEF was found to be dependent on echo time and spin echo displacement time.
The results of this study demonstrate the limitations of current ASE based qBOLD measurements and provide a
foundation for the optimisation of future acquisition approaches.
1. Introduction

The quantitative BOLD (qBOLD) technique is a relaxometry based
approach for mapping oxygen extraction fraction (OEF) and deoxygen-
ated blood volume (DBV) in the human brain (He and Yablonskiy, 2007).
An elevated OEF is indicative of tissue at risk of infarction, such as the
penumbral tissue surrounding the core infarct of an ischaemic stroke
(Astrup et al., 1981). When combined with a measurement of cerebral
blood flow (CBF), the cerebral metabolic rate of oxygen consumption
(CMRO2) can also be estimated (Kety and Schmidt, 1948). Since qBOLD
can provide this valuable information in a non-invasive and rapidly ac-
quired manner, it has a great deal of potential for providing these
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The analytical model used to analyse qBOLD data assumes that the
signal decay behaves as though it were in the static dephasing regime
(SDR) i.e. the diffusion of water in tissue does not influence the signal
decay due to magnetic field inhomogeneity (Yablonskiy and Haacke,
1994). However, simulations of the Gradient Echo Sampling of Spin Echo
(GESSE) pulse sequence, which is often used to acquire qBOLD data, have
shown that this is not the case and that diffusion introduces a vessel size
dependent effect on the signal decay (Dickson et al., 2010; Pannetier
et al., 2014). However, qBOLD data can also be acquired using the
Asymmetric Spin Echo (ASE) pulse sequence, which provides a direct
edical School, Queen’s Medical Centre, Nottingham, NG7 2UH, UK.
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measurement of the reversible relaxation rate, R2
0, and eliminates the

need to remove R2-weighting from the acquired signal (required by
GESSE) (An and Lin, 2003; Stone and Blockley, 2017). Nevertheless, it is
unclear whether a similar diffusion effect is present in ASE data. Inter-
estingly estimates of DBV made using this ASE based acquisition are
systematically higher than those reported for GESSE basedmeasurements
(He and Yablonskiy, 2007), suggesting that different effects may be at
play.

The overestimation of DBV by ASE based qBOLD is at least partially
responsible for the underestimation of the OEF (Stone and Blockley,
2017). This overestimation has previously been suggested to be due to
the presence of intravascular blood signal, which is not accounted for in
the analytical qBOLD model, with flow crushing gradients proposed as a
solution (An and Lin, 2003). However, since it has been shown that
diffusion results in additional signal attenuation (Dickson et al., 2010),
which is similarly unaccounted for in the analytical qBOLD model, this
may also provide a mechanism for DBV overestimation.

In this study, we investigate both mechanisms to discover whether
either can account for the overestimation of DBV in ASE based qBOLD.
The effect of diffusion on the extravascular tissue signal was examined
using Monte Carlo simulations (Boxerman et al., 1995) and the intra-
vascular blood signal was simulated using a recently published analytical
model (Berman and Pike, 2018). Whilst these effects are initially
considered using simulations with vessels of a single radius, these results
are also integrated using a more physiologically realistic vessel size dis-
tribution to investigate sources of systematic error in real world
measurements.

1.1. Theory

Transverse signal decay results from dephasing of the net magnet-
isation due to the presence of magnetic field inhomogeneity at multiple
scales. The effect of these scales on the qBOLD signal can be considered
with reference to a spin echo pulse sequence. At the microscopic scale
spins experience local magnetic field inhomogeneities caused by neigh-
bouring spins that are rapidly varying. Due to this rapid magnetic field
variation, the phase evolution cannot be rewound by the application of a
refocussing pulse. The resulting signal decay is described by the irre-
versible transverse relaxation rate R2. The macroscopic scale describes
magnetic field inhomogeneity on the scale of the head e.g. due to the
nasal sinuses or ear canals. This effect can be reversed by a refocussing
pulse due to its static nature, enabling the phase evolution in the period
before the refocussing pulse to be rewound by the time the spin echo is
formed. At this scale the signal decay is described by the reversible
relaxation rate R₂0 and referred to as the SDR. At intermediate scales,
often referred to as the mesoscopic scale, diffusion becomes increasingly
important as the so called Diffusion Narrowing Regime is approached.
The transition between these regimes is dependent on the scale of the
magnetic field inhomogeneity and the distance the spin travels due to
diffusion. More precisely, the characteristic diffusion time, τD,

τD∝R2
c

�
D (1)

which is dependent on the radius, Rc, of the deoxygenated blood vessel
and the diffusion coefficient, D, is on the order of the time taken by a
water molecule to diffuse a distance equivalent to the radius of the vessel
(Yablonskiy and Haacke, 1994). This results in an averaging of the
magnetic field distribution surrounding the vessels and a loss of phase
history, meaning that signal cannot be efficiently recovered by a refo-
cussing pulse.

1.2. Modelling the qBOLD signal

The qBOLD model relies on the known relationship between R₂0 and
the baseline OEF, E0, and deoxygenated blood volume fraction, V0, for a
network of randomly oriented blood vessels approximated as infinite
2

cylinders (Yablonskiy and Haacke, 1994),

R’

2 ¼
4
3
π γ B0 Δχ V0 Hct E0 (2)

where γ is the proton gyromagnetic ratio, B0 is the main magnetic field,
Δx is the difference in volume magnetic susceptibility between fully
oxygenated and fully deoxygenated blood in CGS units and Hct is the
haematocrit. In this work it was assumed that the arterial oxygen satu-
ration is 100% and hence E0¼ 1-Y, where Y is the venous oxygen satu-
ration. Further modelling has shown that the R₂0-weighted signal is not
purely monoexponential and can be approximated for two distinct re-
gimes (An and Lin, 2000; Yablonskiy and Haacke, 1994),

SSðτÞ ¼ S0e
�tE R2e�0:3 ðτ R’2Þ2

�
V0 ; τ <

1:5 V0

R’

2
(3)

SLðτÞ ¼ S0e
�tE R2e�τ R’2eV0 ; τ >

1:5 V0

R’

2
(4)

where tE is the echo time and τ is the spin echo displacement time. In the
long τ regime (SL, Eq. (4)) the signal decay takes a monoexponential
form, whilst in the short τ regime (SS, Eq. (3)) the signal follows a
quadratic exponential form. A log-linear fit to long τ data enables R₂0 to
be estimated. Furthermore, comparison of the measured signal at
τ¼ 0 (SSmeasð0Þ) with the intercept extrapolated from long τ data
(SLextrapð0Þ) enables V0 to be calculated.

V0 ¼ ln SLextrap
�
0
�
� ln SSmeasð0Þ (5)

Henceforth we will refer to this as the SDR qBOLD model.
1.3. Simulating the effect of diffusion

Monte Carlo simulations of the qBOLD signal were performed by
repeating the following three steps for each simulated proton.

Step 1. Generate a system of vessels. The vessel system was constrained
to fit within a sphere of radius Rs. Vessel origin points (O) were randomly
selected, with half placed on the surface of the sphere and half within the
sphere to ensure a homogenous vessel density following previous work
(Dickson et al., 2010). A uniform distribution of points over the surface of
the sphere was ensured by generating a unit vector (Xi) from a normally
distributed random number generator (mean 0, standard deviation 1)
and scaling by Rs (Muller, 1959). Within the sphere, uniform density was
maintained by taking account of the increased volume occupied by points
far from the centre of the system. This scaling factor, U, is selected from a
uniform distribution of random numbers (range 0–1).

ðO1;O2;O3Þ ¼

8>>>>>>>><
>>>>>>>>:

Rs
ðX1;X2;X3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

1 þ X2
2 þ X2

3

q ; on sphere surface

Rs U
1=3

ðX1;X2;X3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

1 þ X2
2 þ X2

3

q ; within sphere

(6)

Vessels were modelled as randomly oriented infinitely long cylinders
with a single radius, Rc, placed at the vessel origin points described by Eq.
(6) and extended out to the surface of the sphere. This enables the volume
occupied by each vessel to be calculated, with further vessels added to
the system until the target blood volume fraction (Vf) was reached.
Random orientation was ensured by generating a unit vector from a
normally distributed random number generator (mean 0, standard de-
viation 1).

Step 2. Proton randomwalk. Protons were initially placed at the centre
of the vessel system. Each step taken by the proton was independently



Fig. 1. Blood vessels are approximated as infinitely long cylinders at an angle θ

with respect to B0, the main magnetic field. The proton location is defined to be
on a plane orthogonal to the blood vessel at a perpendicular distance r and an
angle φ with respect to the projection of B0 onto the plane.
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selected along each dimension from a normal distribution of random
numbers with mean 0 and standard deviation σ with diffusion coefficient,
D, and time interval between steps, Δt.

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 D Δt

p
(7)

Step 3. Estimate the phase accrued at each step. The phase, Δφ, accu-
mulated by the proton during each time interval was calculated by
summing over the field contributions from all N vessels (Boxerman et al.,
1995),

Δϕ ¼ 2π γ B0 Δt ð1� YÞ Hct Δχ
XN
i¼1

�
Rc

ri

�2

cos 2ϕi sin
2θi ; ri � Rc (8)

where θ is the angle of the vessel with respect to B0, ϕ is the angle with
respect to the projection of B0 onto a plane orthogonal to the vessel, ri is
the perpendicular distance to the vessel and Y is the blood oxygen
saturation (see Fig. 1). Only the equation for the magnetic field outside of
the vessel is presented, since only extravascular signal was simulated.

By appropriate combination of the phase accrued in each interval it is
possible to simulate the phase evolution of the ASE and GESSE pulse
sequences as a function of τ, φ(τ).

φðτÞ ¼
Xm
j¼1

Δφj �
Xn

j¼mþ1

Δφj (9)

wherem defines the transition from signal decay to signal recovery due to
the refocussing pulse, n is the point at which the signal is acquired and
where 0� m � n. For ASE m ¼ ðtE � τÞ = 2 Δt and n ¼ tE = Δt, whilst for
GESSE m ¼ tSE = 2 Δt and n ¼ ðtSE þ τÞ = Δt. Here, tE is defined as the
timing of the centre of the readout and tSE is the time at which the spin
echo forms (see Fig. 2). These definitions reflect an important distinction
between the ASE and GESSE pulse sequences, whereby tE is fixed for ASE
and variable for GESSE whilst tSE is variable for ASE and fixed for GESSE.

The phase evolution of P protons is then summed to simulate the
decay of the extravascular ASE or GESSE signal (Weisskoff et al., 1994),

SEV ðtE ; τÞ ¼
����1P

XP
k¼1

ei φðτÞ
����e�

tE
T2;t (10)

where T2,t is the underlying tissue T2.
Intravascular signal has traditionally been difficult to simulate, with

empirical measurements of blood R₂ and R₂* commonly used (Griffeth
and Buxton, 2011). However, simulating the R₂0-weighted signal using
the difference between R₂ and R₂* is likely to be inaccurate in the short τ
regime. Recently an analytical model of the blood signal during a
Carr-Purcell Meiboom-Gill (CPMG) pulse sequence was extended to
capture the signal evolution between an arbitrary number of spin echoes
(Berman and Pike, 2018), i.e. the conditions that exist for ASE and GESSE
pulse sequences. Using this model, the intravascular signal, SIV, is
described by,

SIV ðtE; τÞ ¼ exp

8><
>:� γ2

2
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2
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1
4
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�1
2
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9>=
>;exp

�
� tE
T2;bj0

�

(11)

Here τD¼Rrbc
2 /Db, where Rrbc is the characteristic size of red blood

cells and Db is the diffusion coefficient of blood, T2,b|0 is the intrinsic T2 of
blood (measured when the blood is fully oxygenated) and G0 is the mean
square field inhomogeneity in blood (Berman et al., 2017),
3

G0 ¼ 4
45

Hct ð1� HctÞð4 π Δχ ð0:95� YÞ B0 Þ2 (12)
where the value of 0.95 represents the red blood cell oxygen saturation
which is equal to the susceptibility of plasma (Spees et al., 2001). The
value of tSE is fixed for GESSE but is variable for ASE with tSE ¼ tE � τ. By
definition tE is fixed for ASE and varying for GESSE.

Finally, the total signal, STOT, is calculated by taking a volume
weighted sum of the intra- and extravascular signals.

STOT ¼ 	
1� Vf



SEV þ Vf SIV (13)

It should be noted that if the simulated blood vessels contain deox-
ygenated blood then Vf is equivalent to V0, the deoxygenated blood
volume.

2. Methods

2.1. Simulations

Simulations of the tissue signal were performed following the theory
outlined above. Firstly, extravascular signal decay was simulated using
Monte Carlo simulations (B0¼ 3 T, γ¼ 267.5� 106 rad s�1 T�1). The
radius of the spherical system of vessels, U, was chosen to maintain a
similar number of vessels, N, regardless of the vessel radius (~N1300). For
each proton, a complete random walk was generated with a step size, Δt,
of 20 μs, which was downsampled to 200 μs, and D¼ 1 μm2ms�1 (Box-
erman et al., 1995). The perpendicular distance, ri, to each vessel in the
system was then calculated. For protons that passed close to vessels,
defined as R2

c =r
2
i > 0:04, the perpendicular distance was recalculated

using the original 20 μs time step to better sample the rapid magnetic
field variation expected close to vessels (Dickson et al., 2010). Walks that
moved the proton inside a vessel were flagged to be discarded in order to
simulate non-permeable blood vessels, rather than reflecting the proton
at the vessel surface which is less computationally efficient. This
approach does not prevent protons passing close to vessels (as defined
above) and due to the reduced time step used under this condition the
spatial variation in the magnetic field is well sampled. The phase of each
proton was allowed to evolve for 120m s after the excitation with
Δχ¼ 0.27 ppm in CGS units (Spees et al., 2001). Phase accrual was stored
for each proton in 2m s intervals, Δt. A new system of vessels was



Fig. 2. By combining the phases generated by the Monte Carlo simulations
different pulse sequences can be simulated. The cumulative sum of the phase
accumulated after the 180� refocussing pulse is subtracted from the cumulative
sum of the phases accumulated prior to the refocussing pulse. In a standard spin
echo pulse sequence (a) the refocussing pulse is placed midway between the 90�

excitation pulse and the echo time (tE), which is equal to the spin echo time
(tSE). The GESSE pulse sequence (b) introduces R₂0-weighting through the
parameter τ by altering tE, whilst keeping tSE constant. Note: each value of τ is
acquired at a different tE. The ASE sequence (c) introduces R₂0-weighting by
shifting the refocussing pulse by a time τ/2 leading to a change in tSE, although
tE is kept constant. By convention positive values of τ occur when the tE> tSE
and negative values occur when tE< tSE.
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generated for each proton and a total of 10,000 protons were simulated
for each vessel radius investigated. However, the number of protons that
passed within a vessel increased as vessel radius was reduced (26% at
5 μm versus 3.1% at 1mm with Vf¼ 3%). Therefore, only the first
P¼ 5000 protons that did not pass within a vessel were used to calculate
SEV using Eq. (10) with T2,t¼ 80m s. Secondly, intravascular signal decay
was simulated using Eqs. (11) and (12), which are independent of vessel
radius. Based on previous work the following parameters were used
(Berman et al., 2017): T2,b|0¼ 189m s, Rrbc¼ 2.6 μm and
Db¼ 2 μm2ms�1. The total signal was then calculated using Eq. (13).

Whilst the intravascular simulations are rapid to perform, Monte
Carlo simulations of the extravascular signal are time consuming.
Therefore, the following approaches were taken to accelerate these
simulations, with examples presented as supplementary figures. We have
previously shown that different oxygenation levels can be simulated by
scaling the accrued phase of a nominal oxygenation value by the target
value (Blockley et al., 2008). This is made possible by saving the phase of
each proton and the fact that phase is a linear function of blood
oxygenation for a network of vessels with the same oxygenation
(Fig. S1a). Different volume fractions can be simulated from the signal
magnitude generated by Eq. (10). It has been shown that the extravas-
cular signal, SEV, can be described as a radius dependent shape function,
f ðRc;τÞ, scaled by the volume fraction (Dickson et al., 2011; Kiselev and
Posse, 1999) (Fig. S2a).

SEV
	
Rc; τ


 ¼ exp
�� Vf ðRcÞf ðRc; τÞ

�
(14)
4

It is also possible to simulate the effect of different rates of diffusion
using the results of existing Monte Carlo simulations. Since the effect on
the signal decay is dependent on the characteristic diffusion time, τD,
then Eq. (1) provides an alternative way of simulating a change in the
diffusion coefficient. For example, the signal simulated from vessels with
Rc¼ 5 μm and D¼ 1 μm2ms�1 is equivalent to the signal produced by
simulations with Rc¼ 7 μm and D¼ 2 μm2ms�1 i.e. doubling D requires
Rc to be increased by

ffiffiffi
2

p
(Fig. S3a). Since the diffusion coefficient is

expected to vary in the range 0.78–1.09 μm2ms�1 in cortical grey matter
(Helenius et al., 2002), this is equivalent to between an 11.6% reduction
and a 4.4% increase in vessel radius. As such, the diffusion coefficient
wasn’t varied in the following simulations, relying on variation in Rc to
examine the range of characteristic diffusion times.

Finally, it is possible to simulate the effect of a system with multiple
vessel radii by combining multiple single vessel radius simulations of the
extravascular signal (Dickson et al., 2011; Kiselev and Posse, 1999). The
resulting combined signal, SEVMULTI , can be calculated as the product of
the signals of M single vessel simulations which have already been scaled
for blood oxygenation and volume fraction as described above (Fig. S4a).

SEVMULTI ¼
YM
k¼1

SEV ðkÞ (15)

The total signal including the contribution from intravascular blood
can then be calculated using Eq. (13). In this case the blood volume
fraction is only equivalent to DBV when the vessel distribution does not
include fully oxygenated blood vessels.

When combined these acceleration approaches vastly reduce simu-
lation time. The average duration of a Monte Carlo simulation for a single
vessel radius was 2 h 25min. In contrast, scaling existing Monte Carlo
results takes on the order of 100m s. This enables new investigations to
be performed which were previously prohibitively time consuming.
Analysis of the fidelity of signals generated by scaling existing simula-
tions versus direct simulation showed that in general the percentage
error (

	
Ssimulated � Sscaled


�
Ssimulated) is less than 2% (Figs. S1b, S2b, S3b

and S4b).

2.2. Parameter quantification

The following framework was used to quantify the parameters of the
qBOLD model from the simulated decay curves. The parameters of the
SDR qBOLDmodel (R₂0 and DBV) were organised as a vector of unknowns
(x) in a linear system (A∙x¼ B) (Stone et al., 2019). The first row of the
matrix A represents Eq. (3) when τ¼ 0 with subsequent rows repre-
senting Eq. (4) with values of τ beyond the transition between the
quadratic and linear exponential regime. In this case only values of τ
greater than 15m s were used to be consistent with previous qBOLD
experiments (Stone and Blockley, 2017). Vector B contains the ASE sig-
nals, S(τ).

2
6666664

0 0 1
1 �τ1 1
1 �τ2 1
⋮ ⋮ ⋮
1 �τn 1

3
7777775

2
664

V0

R2’

logðS0Þ � tE �R2

3
775 ¼

2
6666664

logðSð0ÞÞ
logðSðτ1ÞÞ
logðSðτ2ÞÞ

⋮
logðSðτnÞÞ

3
7777775

(16)

Parameters were estimated via Eq. (16) using the least square solu-
tion, with the error in each parameter determined from the covariance
matrix. Finally, OEF can be estimated by rearranging Eq. (2).

E0 ¼ 3 �R’

2

4π � γB0 �Δχ0 �Hct �V0
(17)

2.3. Effect of diffusion on ASE signal decay

Initial simulations were performed for a selection of vessel radii
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(Rc¼ 5, 10, 50, 1000 μm), a venous Y of 60%, a Hct of 40% and a DBV of
3%. Simulations of the ASE pulse sequence were performed with
tE¼ 60m s and �60m s � τ� 60m s for both extra- and intravascular
signal, where τ¼ 60m s corresponds to pure gradient echo decay. For
validation purposes, similar simulations were performed for the GESSE
pulse sequence using tSE¼ 60m s and �30m s � τ� 60m s. Hence a
common tE/tSE was chosen to be consistent with previous simulations
(Dickson et al., 2010).
2.4. Effect of diffusion on qBOLD parameters

A further set of synthetic ASE signal decay curves were generated for
vessel radii logarithmically spaced between 1 and 1000 μm. All other
parameters were set consistent with previous experimental qBOLD
measurements (Stone and Blockley, 2017). In the context of these sim-
ulations this required tE¼ 80m s with τ¼ 0 and τ¼ 16–64m s in 4m s
steps (Δτ). The apparent value of R2’, DBV and OEF were then estimated
using Eqs. (16) and (17). The effect of diffusion on the estimation of
qBOLD parameters was investigated by first fixing OEF and varying DBV
and then by fixing DBV and varying OEF. In the former case a fixed OEF
of 40% was coupled with DBV values of 1, 3 and 5%, whilst in the latter
case DBV was fixed at 3% and OEF took values of 20, 40 and 60%. These
values are considered to be the true parameters in both cases. The results
of varying DBV were also used to consider the percentage error in DBV as
a function of vessel radius i.e.

	
Vapparent
0 � Vtrue

0


�
Vtrue
0 . In these single

vessel simulations arterial blood is assumed to have an oxygen saturation,
Y, of 100% hence the venous oxygen saturation, Yv ¼ 1� E0.

The effect of intravascular signal on qBOLD parameter estimates was
investigated by repeating these simulations, but excluding the intravas-
cular compartment. In this way it was possible to quantify the percentage
of the parameter estimate (PE) which results from the presence of
intravascular signal i.e. ðPEEV � PEEVþIV Þ=PEEVþIV .

Further investigation of the effect of diffusion on DBV estimates was
pursued based on a consideration of Eq. (5), which suggests that errors
must be due to either the signal measured at τ¼ 0 (SSmeasð0Þ) or the
extrapolated estimate of the signal at τ¼ 0 from the R₂0 fit (SLextrapð0Þ), or
both. However, given the analysis represented by Eq. (16), SLextrapð0Þ is not
estimated and SSmeasð0Þ is confounded by T2 decay. The latter was cor-
rected by calculating the signal decay relative to the value at
R¼ 1000 μm, where previous simulations would suggest the SDR applies
and hence signal attenuation should be zero. The former was estimated
by subtracting this relative measure of SSmeasð0Þ from the estimated value
of apparent DBV.
2.5. Effect of a physiologically realistic vessel radius distribution

The effect of a more physiologically realistic distribution of vessel
radii was investigated by integrating the results from single radius sim-
ulations. A compartmental model of the vasculature derived from the
morphology of the sheep brain was selected (Sharan et al., 1989). This
model has five orders of arterial and venous vessels, with a range of radii,
and a capillary compartment with a single vessel radius (Table 1).
Additional Monte Carlo simulations for this range of vessel radii were
performed and combined using the acceleration techniques described
above. Arterial vessels were assigned an arterial oxygen saturation, Ya, of
98%, which was used to calculate the venous saturation, Yv, for a given
OEF.

Yv ¼ Yað1� E0Þ (18)

The capillary compartment was an intermediate oxygen saturation,
Yc, calculated as an average of the arterial and venous saturations
weighted by a factor, κ, equal to 0.4 representing a weighting towards the
venous saturation (Griffeth and Buxton, 2011; Tsai et al., 2003).
5

Yc ¼ κ Ya þ ð1� κ ÞYv (19)
Relative blood volume fractions for each vessel type were calculated
by estimating the volume of each vessel radius population as cylinders
with the properties described in Table 1. These relative blood volume
fractions were then scaled by the total cerebral blood volume (CBV).
Pairs of OEF and CBV values were drawn from a uniform random number
generator within the following ranges: OEF 0–100%, CBV 0–10%. The
qBOLD parameters were quantified for 1000 random OEF-CBV pairs to
examine the effect of diffusion across the physiological range. In the
absence of a strict definition of DBV, the ground truth was assumed to be
equal to the combined blood volume occupied by capillary and venous
vessels. This is therefore only a working assumption, since it is likely the
true DBV is weighted by blood oxygenation and vessel radius. Deoxy-
haemoglobin content, dHb, was calculated based on the same assumption
for DBV and a value for the density of brain tissue ρ¼ 1.04 g/ml (Rempp
et al., 1994) using the following equation.

dHb ¼ 100
V0

ρ
Hct
0:03

E0 (20)

For comparison these simulations were also repeated for the original
ASE based qBOLD implementation with tE¼ 64m s with τ¼ 0 and
τ¼ 10–18m s in 4m s steps (An and Lin, 2003).

Details on how to access the simulation code, simulation results and
analysis code that underlie this study can be found in Appendix A.

3. Results

Fig. 3 presents simulations of the signal generated by the ASE pulse
sequence in the absence of T2 decay and with an initial transverse
magnetisation of one at tE¼ 0. The extravascular signal (Fig. 3a) was
found to be symmetric with respect to the spin echo (τ¼ 0) regardless of
vessel radius. Similarly, the intravascular signal (Fig. 3b) was symmetric,
but displayed a relatively weak signal decay as a function of τ. In contrast,
simulations of the GESSE pulse sequence demonstrated increasing
asymmetry with reducing vessel radius for the extravascular signal and
strong asymmetry for the intravascular signal (Fig. S5).

Fig. 4 displays the effect of vessel size on the parameter estimates
from the SDR qBOLD model. The apparent values of R₂0 plateau above a
critical vessel radius of approximately 40 μm (Fig. 4a,d) and are then
consistent with predictions from the SDR qBOLD model (dashed lines
calculated using Eq. (2)). The apparent DBV is found to be strongly
dependent on vessel radius, peaking between 20 and 30 μm (Fig. 4b,e).
Estimates of the apparent OEF increase monotonically with vessel radius
reaching the value predicted by the SDR qBOLD model as the vessel
radius approaches 1000 μm (Fig. 4c,f). When the true OEF was fixed
whilst DBV was varied (Fig. 4c) estimates of apparent OEF were consis-
tent across DBV levels, suggesting that the error in DBV is a linear scale
factor. Likewise, it can be seen that the profile of apparent DBV when the
true DBV was fixed and OEF was varied (Fig. 4e) peak at different vessel
radius values, suggesting that the error in DBV is OEF dependent.
Furthermore, this effect can be seen to result in a reduced dynamic range
for the estimates of apparent OEF as vessel size is reduced (Fig. 4f). Fig. 5
confirms that the percentage error in DBV is constant for a given com-
bination of OEF and vessel radius (Fig. 5a), but differs for different OEF
values (Fig. 5b). For reference, an increase in the value of the diffusion
coefficient would result in a linear translation to the right along the x-axis
for data plotted against such a log vessel radius.

Fig. 6 considers the contribution of intravascular signal to the
parameter estimates in Fig. 4 as a function of vessel radius. This contri-
bution is generally small for R₂0 and DBV at around �1% for vessel radii
greater than 10 μm. However, the intravascular signal appears to reflect a
larger contribution when OEF is low, conditions where qBOLD contrast is
low. Despite this the effect of the intravascular signal appears to be
largely cancelled in the estimation of OEF (Fig. 6c,f). A reproduction of
Fig. 4 without intravascular signal is included in the supplementary



Table 1
Vascular compartment model described by (Sharan et al., 1989). Radius, length and number of vessels were used to calculate the relative volume fractions for each
compartment with and without arteriolar vessels.

Arterioles Capillary Venules

a1 a2 a3 a4 a5 c v5 v4 v3 v2 v1

Radius (μm) 60 30 15 10 5 2.8 7.5 15 22.5 45 90
Length (μm) 5390 2690 1350 900 450 600 450 900 1350 2690 5390
Number of vessels 1880 1.5� 104 1.15� 105 3.92� 105 3.01� 106 5.92� 107 3.01� 106 3.92� 105 1.15� 105 1.5� 104 1880
Relative vol. frac. (%) (all vessel
types)

4.3 4.3 4.1 4.1 4.0 32.6 8.9 9.3 9.2 9.6 9.6

Relative vol. frac. (%) (excluding
arterioles)

41.2 11.3 11.7 11.6 12.1 12.1
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material for comparison and shows little discernible difference by eye
(Fig. S6).

Fig. 7 investigates the origin of the DBV estimation error attributed
either to an error in the measured signal at τ¼ 0 (orange markers) or an
error in the intercept extrapolated from long τ data (green markers). In
the case of the former,�ln SSmeasð0Þ is plotted such that the sum of the two
curves representing the apparent DBV (represented by grey shading).
Fig. 3. Examples of the signal decay from the ASE pulse sequence as a function
of vessel radius (Y¼ 60%, V0¼ 3%, Hct¼ 40%). (a) The extravascular signal
(SEV) decay is observed to be symmetric with respect to τ¼ 0 regardless of vessel
radius. Signal attenuation at τ¼ 0 increases as vessel radius decreases due to the
increased effect of diffusion. (b) The intravascular signal (SIV) decay shows
considerable signal attenuation which is symmetric and varies weakly with τ.
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When interpreting these curves, it is useful to consider the orange
markers as a reflection of the deviation of the spin echo from perfect
refocusing (with positive values representing increased signal attenua-
tion) and the green markers as a reflection of the deviation of the
measured R₂0 from the SDR qBOLD estimate of R₂0. The former is found to
be subject to increasing signal attenuation as vessel size is reduced, which
is strongly affected by blood oxygenation via OEF. The latter is found to
plateau and is relatively consistent with the SDR qBOLD model for vessel
radii greater than approximately 20 μm.

Fig. 8 explores the combined effect of a distribution of vessel radii on
parameter estimates from the SDR qBOLD model. The apparent R₂0 is
plotted against values of R₂0 predicted by the SDR model via Eq. (2), with
DBV estimated according to the working assumption described above
(Fig. 8a). Data points are colour coded to reflect the true voxel deoxy-
haemoglobin content in mldHb/100 gtissue. A linear dependence is main-
tained, albeit with a shallower gradient than predicted by the SDR
qBOLD model. A large amount of uncertainty is observed in estimates of
apparent DBV over the large physiological range tested (Fig. 8b), with
data points colour coded by true OEF value. However, this level of un-
certainty does not propagate into estimates of apparent OEF (Fig. 8c)
where data points are colour coded by true DBV. Apparent OEF increases
monotonically between 0 and 50%, but reaches a plateau for higher
values, and is inappropriately scaled compared with the true OEF i.e. the
full range of OEF is represented by apparent OEF values between 16%
and 25%. In a similar manner to Fig. 5, the percentage error in the
apparent DBV can be plotted as a function of true OEF (Fig. 9). As noted
for the single vessel radius simulations, this error is strongly OEF
dependent.

These simulations were repeated for different ASE pulse sequence
parameters, namely variations in tE and τ, and included in supplemental
material. The results in Fig. S7 largely mirror those in Fig. 8 with the
following variations. The slope of the relationship between apparent R₂0

and SDR qBOLD predicted R₂0 is slightly reduced for the alternative pa-
rameters (Fig. S7a). More noticeable is the reduction in the range of
apparent DBV values (Fig. S7b), with the error in the apparent DBV
reduced by more than a half (Fig. S8). Whilst the apparent OEF is also
inappropriately scaled, the relationship with true OEF is more monotonic
in nature.

4. Discussion

In this study numerical simulations were used to investigate the effect
of diffusion on ASE based qBOLD measurements and the origin of DBV
overestimation in such measurements. In contrast to the previously
observed shift of the GESSE signal maximum due to the effect of diffu-
sion, the ASE signal was observed to maintain its symmetry as vessel
radius is reduced and the effect of diffusion is increased. Two hypotheses
for the origin of the observed DBV overestimation were tested: (i) the
effect of intravascular blood signal and (ii) the effect of diffusion on the
extravascular tissue signal. The presence of intravascular blood signal
was found to have a minor effect on qBOLD parameter estimates. It is
therefore unlikely to be responsible for the majority of the



Fig. 4. Investigation of the effect of vessel radius on the parameter estimates derived from ASE based qBOLD. Simulations were first performed with a fixed OEF
(E0¼ 40%) and three DBV values (top) then with a fixed DBV (V0¼ 3%) and three values of OEF (bottom). The apparent R₂0 (left) is estimated for each OEF-DBV pair
and presented alongside the R₂0 values predicted by the SDR qBOLD model (dashed lines). Likewise, the apparent DBV (centre) and apparent OEF (right) are presented
alongside the true DBV and OEF (dashed lines).
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overestimation observed in DBV measurements. In contrast, the extra-
vascular signal was shown to have a very strong dependence on vessel
radius providing the potential for a large error in DBV and is considered
to be the dominant cause of DBV overestimation. Furthermore, the error
in DBV is predicted to be blood oxygen saturation level dependent.
Integration of these single vessel radius simulations via a more physio-
logically realistic vessel distribution revealed three main findings. Firstly,
that the relationship between the apparent R₂0 and deoxyhaemoglobin
content is retained. Secondly, there is an inherent uncertainty in esti-
mates of DBV. Finally, this uncertainty is not propagated to apparent OEF
estimates, but results in inappropriate scaling of these estimates.
Furthermore, the monotonic behaviour of the relationship between
apparent and true OEF was found to be dependent on the pulse sequence
parameters tE and τ. These results provide new directions for improving
the modelling of ASE qBOLD signal and the reduction of systematic error
in parameter estimates of OEF and DBV.

4.1. Effect of diffusion on ASE measurements

Whilst several studies have investigated the qBOLD signal as acquired
by the GESSE pulse sequence (Christen et al., 2014; Dickson et al., 2011,
2010; Pannetier et al., 2014), this study considered whether the signal
decay under an ASE acquisition behaves in the same way. One particular
characteristic of the GESSE pulse sequence concerns the maximum of the
qBOLD signal decay curve. This would ordinarily be expected to coincide
with the spin echo (τ¼ 0), but has been shown to be shifted towards
negative τ values (Fig. S5a) for the GESSE sequence in the presence of
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diffusion (Dickson et al., 2010; Pannetier et al., 2014). However, this
effect is not observed in simulations of the extravascular signal acquired
using an ASE pulse sequence (Fig. 3a), where the signal maximum was
found to be close to the spin echo (τ¼ 0). However, the GESSE and ASE
sequences differ in an important way. The tE of each successive τ value
increases in the GESSE experiment and hence the time for protons to
diffuse around blood vessels increases. Whilst the tE is constant for all τ
values in the ASE method and hence the time for diffusion is also con-
stant. This would suggest that there is a tE dependent component of the
R₂0-weighted signal decay. Such a component has previously been
included as a correction to estimates of R₂0 (Berman et al., 2017).

This study also considered the R₂0-weighted contribution of the blood
to the qBOLD signal using a recently proposed model (Berman and Pike,
2018). In common with the extravascular results, the ASE blood signal is
symmetric with respect to the spin echo, but decays far less as a function
of τ (Fig. 3b). However, the signal is heavily attenuated at all τ values
compared with the extravascular simulations. This is in contrast to sim-
ulations of the GESSE blood signal, which are highly shifted to negative τ
values and present largely as an exponential decay (Fig. S5b).

4.2. Origin of DBV overestimation

Simulations of the combined intravascular and extravascular signal
revealed a vessel radius dependent overestimation of DBV for vessel radii
greater than 5 μm (Fig. 4b,e). The error in the apparent DBV was found to
be OEF dependent (Fig. 5). However, at larger radii (approaching 1mm)
estimates of DBV were consistent with ground truth values. The



Fig. 5. Estimation of the percentage error in DBV at each of the three simulated
values with (a) fixed E0¼ 40%, varying DBV and (b) fixed V0¼ 3%, varying E0.
The largest error is observed for vessels between 10 and 100 μm and is smallest
as vessel size approaches 1mm. The magnitude of the error is also dependent on
OEF. The percentage error was calculated as

	
Vapparent
0 � Vtrue

0


�
Vtrue
0 .
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contribution of intravascular signal to these parameter estimates was
determined by comparing simulations with (Fig. 4) and without (Fig. S6)
an intravascular compartment. A small and largely vessel radius inde-
pendent effect (for Rc> 10 μm) was observed (Fig. 6b,e). The effect of
intravascular signal was more pronounced for smaller vessel radii and
low OEF, where the relative contribution of intravascular signal is
increased by weak extravascular contrast. Despite this, the over-
estimation of DBV is dominated by the effect of diffusion on the extra-
vascular signal.

Finally, Eq. (4) provides the opportunity to consider whether the
systematic error in DBV originates in the measurement of the spin echo
(SSmeasð0Þ), the intercept extrapolated from the long τ regime (SLextrapð0Þ) or
a combination of both, as explored in Fig. 7. For vessel radii greater than
20 μm additional signal attenuation of SSmeasð0Þ is the main driver of
overestimation of DBV. However, for vessels with radii below 20 μm,
errors in SLextrapð0Þ provide an additional confound to DBV estimation.
These results are consistent with the characteristics of gradient echo
versus spin echo BOLD vessel size sensitivity, which correspond to
ln SLextrapð0Þ and ln SSmeasð0Þ, respectively (Boxerman et al., 1995). For the
smallest vessel radii the apparent R₂0 is reduced relative to the value
expected by the SDR qBOLD model (Fig. 4a,d) due to diffusional nar-
rowing, such that ln SLextrapð0Þ is also reduced (Fig. 7). Similarly, addi-
tional unrecoverable signal decay due to diffusion narrowing results in a
decrease in the value of ln SSmeasð0Þ, which is analogous to an increase in
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apparent R₂ and is strongest for capillary sized vessels (Note that Fig. 7
plots � ln SSmeasð0Þ). With increasing vessel radius, R₂0 approaches the
SDR qBOLD model prediction and the value of ln SLextrapð0Þ approaches a
constant value. Similarly the attenuation of the spin echo is reduced as
the SDR is approached and ln SSmeasð0Þ reaches its minimum. Therefore,
when the differing profiles of these phenomena are combined the form of
the apparent DBV as a function of vessel radius can be described.

4.3. Effect of a physiological vessel radius distribution

Having established the vessel radius dependence of the qBOLD signal,
the implications for experimental measurements were considered. In
order to integrate the single vessel radius results, a vessel distribution
with a small number of discrete vessel radii was selected. This enabled
different oxygenation levels to be associated with different vessel types.
A wide physiological range was investigated by randomly selecting pairs
of OEF and CBV values. The apparent R₂0 was found to be tightly corre-
lated with the R₂0 predicted by SDR qBOLD model (Fig. 8a). This is
important as it demonstrates that the relationship between R₂0 and the
voxel deoxyhaemoglobin content (proportional to the product of deox-
yhaemoglobin concentration and DBV) is maintained despite the effects
of diffusion. It should therefore be possible to quantify maps of R₂0 in
terms of deoxyhaemoglobin content with appropriate scaling. Likewise
with improved quantification of DBV, either through improvements to
the qBOLD technique or via an additional experimental technique
(Blockley et al., 2013; Lee et al., 2018), accurate measurements of OEF
are possible. A large amount of uncertainty was observed in the apparent
DBV (Fig. 8b). This was demonstrated to be blood oxygenation depen-
dent i.e. a function of OEF (Fig. 9). This is consistent with the results of
the single vessel simulations (Fig. 5) and demonstrates the important
contribution of smaller vessel radii. This also explains why this uncer-
tainty does not propagate into the apparent OEF, since the percentage
error in apparent DBV is constant at each OEF level (Fig. 8c). However,
the increasing percentage error in apparent DBV with OEF (Fig. 9) results
in a progressive underestimation of apparent OEF. A plateau in the
apparent OEF limits the maximummeasured OEF to approximately 50%.
Despite this the remaining range covers the majority of the expected
healthy physiological range (Marchal et al., 1992). These simulation
were repeated for an alternative set of ASE pulse sequence parameters,
replicating the effects observed for R₂0 and DBV (Figs. S7a and b and
Fig. S8). A monotonic relationship between apparent and true OEF was
revealed and although the linear portion is limited to the range between
20% and 80% this encompasses the range reported in ischaemic stroke
lesions defined using diffusion weighted imaging (Guadagno et al.,
2006). The underlying mechanisms for this altered behaviour are
inherently multidimensional and require further systematic investiga-
tion. However, these results demonstrate that there is additional scope
for optimisation of qBOLD through changes to tE and the range of τ
values.

Finally, the results of these multi-radius simulations appear to be
consistent with previous measurements of OEF¼ 21� 2% and
DBV¼ 3.6� 0.4% (Stone and Blockley, 2017). Under the assumption
that a true OEF of 40% is healthy, Fig. 8 would predict an apparent OEF
of 24%. Likewise Fig. 9 would predict the percentage error in the
apparent DBV is 100%, which would reduce the measured value above to
1.8%. This would bring these measurements in line with other MR based
measurements of DBV at 1.75% (He and Yablonskiy, 2007) and venous
CBV at 2.2% (Blockley et al., 2013). For the alternative ASE pulse
sequence parameters Fig. S7 predicts an apparent OEF of 40% for a true
OEF value of 40%, which is consistent with experiments (An and Lin,
2003). However, Fig. S7 also predicts that the dynamic range of OEF is
compressed, suggesting that modulations of OEF with respect to this
baseline would be underestimated.



Fig. 6. Investigation of the contribution of intravascular signal to qBOLD parameter estimates (PE) presented in Fig. 3. This contribution was quantified as the
percentage difference between PEs simulated with and without intravascular signal i.e. ðPEEV � PEEVþIV Þ=PEEVþIV . The contribution of intravascular signal is observed
to be relatively small for all parameters. Extravascular only PE results can be found in supplementary materials (Fig. S6).

Fig. 7. Investigation of the origin of the overestimation of the measured DBV for three different OEF values; (a) E0¼ 60%, (b) E0¼ 40%, (c) E0¼ 20% (true V0¼ 3%).
The orange markers represent the natural log of the measured signal at τ¼ 0, plotted here as � ln SSmeasð0Þ, displaying increasing signal attenuation with decreasing
vessel radius. Whilst the green markers represent the log of the intercept extrapolated from long τ data points (ln SLextrapð0Þ) and appears more stable in the face of a
reduced vessel radius. The sum of these curves is the apparent DBV as in Fig. 4 and represented here by the grey shaded area. Dashed lines display the prediction made
by the SDR qBOLD model.
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Fig. 8. The effect of multiple vessel radii simulations on the qBOLD parameter estimates was considered by generating many pairs of OEF and CBV values. ASE pulse
sequence parameters were tE¼ 80m s with τ¼ 0 and τ¼ 16–64m s in 4m s steps following the work of (Stone and Blockley, 2017). (a) The apparent R₂0 is linearly
dependent on the R₂0 predicted by the SDR model, but with a different gradient. (b) A large amount of uncertainty in the apparent DBV is observed. (c) The apparent
OEF appears to plateau beyond 50%, but monotonically increases with true OEF for lower values. Markers are coloured to reflect true dHb content, true OEF and true
DBV for parts (a), (b) and (c), respectively.

Fig. 9. The uncertainty in DBV in Fig. 8 was investigated by plotting apparent
DBV as a function of true OEF. ASE pulse sequence parameters are the same as
detailed in Fig. 8. The results suggest that the error in the apparent DBV is OEF
dependent. Markers are coloured to reflect their true DBV.
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4.4. Limitations

Whilst the simulation methodology used in this study has identified
some limitations of the current implementation of ASE based qBOLD, it
also offers an opportunity to optimise future implementations. Further
simulations could be used to identify optimal values of tE and τ which
maximise the linearity of the relationship between apparent OEF and the
ground truth. They could also be used to estimate a more appropriate
scale factor for OEF estimation by treating the 4

3 π geometry factor in Eq.
(2) as an arbitrary scale factor. Such an approach has previously been
used in calibrated BOLD to great effect (Griffeth and Buxton, 2011).
10
The results of this study rely on a detailed model of the qBOLD signal.
However, in this implementation it only accounts for the intra- and
extravascular signal contributions of a single distribution of blood vessels
in grey matter. Whilst this two compartment model was sufficient to
investigate the origin of DBV overestimation in ASE based qBOLD, a more
realistic model might include the signal contributions of cerebral spinal
fluid (Dickson et al., 2009), the myelin in white matter (Bouvier et al.,
2013), desaturated arterial blood vessels (Boas et al., 2008), the effect of
iron deposition (Wismer et al., 1988) or different vessel radius distribu-
tions (Germuska et al., 2013; Lauwers et al., 2008). As such these con-
tributions to the qBOLD signal may also provide fertile ground for future
exploration.

In addition, this study did not consider the effects of magnetic field
inhomogeneity or noise on the measured signal. The former has been
extensively studied experimentally (Blockley and Stone, 2016; Dickson
et al., 2010; Yablonskiy, 1998), but may benefit from more detailed
simulations to test the assumptions of these correction schemes. The
latter poses a particular problem for the analysis approach described by
Eqs. (16) and (17), which is reliant on a single measurement in the short τ
regime acquired at the spin echo. A broader range of measurements in the
short τ regime could be incorporated into the analysis using a non-linear
model fitting approach based on Eqs. (3) and (4), whichmay also result in
reduced uncertainty in parameter estimates. Further improvements could
be achieved by using a more sophisticated analysis approach, such as a
Bayesian framework which would enable prior knowledge about physi-
ological parameters to be incorporated (Chappell et al., 2008). Finally,
this study has demonstrated that by altering the ASE acquisition pa-
rameters it is possible to address some of the limitations of our existing
experimental approach. Optimisation of these parameters will form the
focus of future work.

5. Conclusion

The ASE qBOLD signal decay was found to be symmetric with respect
to the spin echo, in contrast to previous simulation of the GESSE pulse
sequence. Overestimation of DBV by ASE based qBOLD was found to be
dominated by the effect of diffusion on extravascular signal decay, with
the presence of intravascular blood signal having only a small
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contribution. Integrating the results of single vessel simulations using an
in vivo distribution of vessel radii revealed several limitations of current
measurements and provides a foundation for future optimisation of ASE
based qBOLD acquisitions.
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Appendix A

The results of the simulations performed in this study can be accessed
via the Oxford University Research Archive, doi: https://doi.o
rg/10.5287/bodleian:mvPY99a9D. Furthermore, the code used to
generate these simulation results and to analyse experimental data can be
downloaded from the Zenodo repository, doi: https://doi.org/10.
5281/zenodo.3241420.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.116035.
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